

A Yebes W band line survey towards Supernova remnant 3C391: Evidence of CR-induced chemistry

• Chemical effects of cosmic rays (CRs)

CR ionization CR heating of gas

- CR induced UV radiation
- CR-induced grain global heating

CR sputtering

. . .

Observations and simulations

High HCO⁺/CO abundance ratio in SNR W49B (Zhou et al. 2022) CO \rightarrow C \rightarrow C⁺ transition with high CR ionization rate (Bisbas et al. 2017)

CR ionization rate is an important input parameter in chemical simulations.

Supernova remnants (SNRs) are believed to be the accelerators of Galactic CRs.

Hadronic γ-ray (high-energy CR protons):

$$p + p \to \pi^0 + X$$
$$\pi^0 \to 2\gamma$$

is detected in many SNRs.

Enhanced CR ionization rate ($\zeta \sim 10^{-15} \text{ s}^{-1}$):

IC443, W51C, W28, W49B, W44 - middle-aged/old SNRs with γ-ray detection and interacting with molecular clouds.

More samples? Detailed CR chemistry?

γ-ray emission IC443 (Acciari et al. 2009) W5⁻ W28 (Aharonian et al. 2008) W49

W51C (Abdo et al. 2009) W49B (Abdo et al. 2010)

• A typical SNR interacting with molecular cloud: OH 1720 MHz masers (Frail et al. 1996) Broad molecular lines (Reach & Rho 1999) etc.

• Evidence of CRs:

Fermi γ-ray detection (Ergin et al. 2014)

A possible good case to study CR chemistry:

well-defined unshocked gas – free from SNR shock disruption

• A typical SNR interacting with molecular cloud:

OH 1720 MHz masers (Frail et al. 1996) Broad molecular lines (Reach & Rho 1999) etc.

• Evidence of CRs:

Fermi γ-ray detection (Ergin et al. 2014)

A possible good case to study CR chemistry:

well-defined unshocked gas – free from SNR shock disruption

Reach & Rho 1999

• A typical SNR interacting with molecular cloud:

OH 1720 MHz masers (Frail et al. 1996) Broad molecular lines (Reach & Rho 1999) etc.

• Evidence of CRs:

Fermi y-ray detection (Ergin et al. 2014)

A possible good case to study CR chemistry:

well-defined unshocked gas – free from SNR shock disruption

• A typical SNR interacting with molecular cloud: OH 1720 MHz masers (Frail et al. 1996) Broad molecular lines (Reach & Rho 1999) etc.

• Evidence of CRs:

Fermi y-ray detection (Ergin et al. 2014)

A possible good case to study CR chemistry:

well-defined unshocked gas – free from SNR shock disruption

• New observation:

Yebes W band line survey at 71.5-90 GHz RMS ~ 12-15 mK @ 0.2 km/s

• Archival data:

Nobeyama FOREST ¹²CO ¹³CO 1-0 JCMT COHRS ¹²CO 3-2

Contours of wide and narrow components of CS 2-1 line Reach & Rho 1999

18 molecules and 24 transitions (without HFS)

HCO+-like	HCO ⁺ , H ¹³ CO ⁺ , HC ¹⁸ O ⁺ , HOC ⁺ , HCS ⁺		
HCO-like	HCO, H ₂ CO		
HCN-like	HCN, H ¹³ CN, HN ¹³ C		
Carbon chain	C ₂ H, C ₄ H, CCS, HC ₃ N, c-C ₃ H ₂ , I-C ₃ H ⁺		
Others	$CH_3CN, CH_2CO (H_2CCO)$		

5/11

RADEX LVG estimation

Assuming $T_{kin} = 20K$ (Reach & Rho 1999, T_{ex} of ¹²CO, and I(H¹³CN)/I(HN¹³C) ratio)

Assuming (1) T_{ex} = 5K or 10K, (2) optically thin, (3) ${}^{12}C/{}^{13}C$ = 45, and (4) $N(H_2) = 7 \times 10^5 N({}^{13}CO)$

Results:

 $X(C_2H) \approx (2.4-3.0) \times 10^{-8}$ $X(HCO+)/X(CO) \approx (5.2-5.7) \times 10^{-5}$ $X(HCO^+)/X(HOC^+) \approx 130-140$ $X(C_{3}H^{+}) \approx (2.2-6.2) \times 10^{-11}$ X(DCO⁺)/X(HCO⁺) $\leq (2.8-2.9) \times 10^{-3}$ X(HCS⁺)/X(CS) $\approx 0.14-0.18$

Vaupre et al. 2014:

$$x_{\rm e} = \left(\frac{k_{\rm f} x({\rm HD})}{3R_{\rm D}} - \delta\right) \frac{1}{k_{\rm e}}$$
$$\frac{\zeta}{n_{\rm H}} = \frac{\beta'}{k_{\rm H}} (2\beta x_{\rm e} + \delta) R_{\rm H} x_{\rm e}$$

 $R_{D} = X(DCO^{+})/X(HCO^{+})$ $R_{H} = X(HCO^{+})/X(CO)$ Assuming x(HD) = 1.5×10⁻⁵ Then $\zeta \gtrsim (2.9-4.1) \times 10^{-14} \text{ s}^{-1}$

- $\sim 10^3$ higher than the typical value
- ~ 10 times higher than W51C and W28 L

Object	E _{lb}	$\zeta_{\rm gal}^{\rm H_2}(a=2.0)$	$\zeta_{\rm gal}^{\rm H_2}(a=1.0)$
W28	1 GeV	0.249	0.350
	100 MeV	7.56	9.87
	30 MeV	24.5	24.9
W51C	1 GeV	0.0259	0.0353
	100 MeV	0.615	0.800
	30 MeV	2.95	3.46
3C391	1 GeV	9.28	16.4
	100 MeV	91.4	121
	30 MeV	567	663

 $\zeta_{\rm gal}^{\rm H_2} = 2 \times 10^{-16} \, {\rm s}^{-1}$

Schuppan et al. 2012

a and E_{lb} are parameters about the spectrum of CR protons

• $X(C_2H) \approx (2.4-3.0) \times 10^{-8}$

~ 10⁻¹⁰ – 10⁻⁸ in dark clouds (Wootten et al. 1980), ~ 10⁻⁸ in diffuse clouds (Lucas & Liszt 2000)

- $X(C_2H) \approx (2.4-3.0) \times 10^{-8}$
- ~ 10⁻¹⁰ 10⁻⁸ in dark clouds (Wootten et al. 1980), ~ 10⁻⁸ in diffuse clouds (Lucas & Liszt 2000)
- $X(C_3H^+) \approx (2.2-6.2) \times 10^{-11}$
- ~ 10⁻¹¹ in Horsehead PDR (Guzmán et al. 2015), \approx 2.4×10⁻¹² in TMC-1 (Cernicharo et al. 2022)

- $X(C_2H) \approx (2.4-3.0) \times 10^{-8}$
- ~ 10⁻¹⁰ 10⁻⁸ in dark clouds (Wootten et al. 1980), ~ 10⁻⁸ in diffuse clouds (Lucas & Liszt 2000)
- $X(C_3H^+) \approx (2.2-6.2) \times 10^{-11}$
- ~ 10⁻¹¹ in Horsehead PDR (Guzmán et al. 2015), \approx 2.4×10⁻¹² in TMC-1 (Cernicharo et al. 2022)
- X(HCO⁺)/X(HOC⁺) ≈ 130-140
- ~ 10^3 in dense clouds, ~ 10^2 in PDRs (Harada et al. 2021)

- $X(C_2H) \approx (2.4-3.0) \times 10^{-8}$
- ~ 10⁻¹⁰ 10⁻⁸ in dark clouds (Wootten et al. 1980), ~ 10⁻⁸ in diffuse clouds (Lucas & Liszt 2000)
- $X(C_3H^+) \approx (2.2-6.2) \times 10^{-11}$
- ~ 10⁻¹¹ in Horsehead PDR (Guzmán et al. 2015), \approx 2.4×10⁻¹² in TMC-1 (Cernicharo et al. 2022)
- X(HCO⁺)/X(HOC⁺) ≈ 130-140
- ~ 10^3 in dense clouds, ~ 10^2 in PDRs (Harada et al. 2021)
- X(HCS⁺)/X(CS) ≈ 0.14-0.18
- ~ 10⁻² in Taurus, Perseus and Orion MCs (Rodríguez-Baras et al. 2021)
- The observed values can be attributed to CR chemistry.

Run phase 1 for 10⁶ years with low ζ , then phase 2 for 5×10⁴ years with enhanced ζ .

 $n_{H2} = 2 \times 10^5 \text{ cm}^{-3}, T = 20 \text{ K}$

The chemical model can explain the X(HCO⁺)/X(HOC⁺) with high ζ . X(HCS⁺)/X(CS), X(C₂H) and X(C₃H⁺) are underestimated by the model.

- We present new Yebes 71.5-90 GHz line survey towards an unshocked cloud of SNR 3C391.
 We detected 24 transitions from 18 molecular species.
- The CR ionization rate is estimated to be $\zeta \gtrsim (2.9-4.1) \times 10^{-14} \text{ s}^{-1}$, which is 10^3 higher than the typical value found in molecular clouds and 10 times higher than W51C and W28.
- Compared with typical molecular clouds, X(C₃H⁺) ↗↗ , X(HCS⁺)/X(CS) ↗↗ , X(C₂H) ↗ , while X(HCO⁺)/X(HOC⁺) ↘↘ . These values can be attributed to CR chemistry.
- The chemical model can explain the X(HCO⁺)/X(HOC⁺) with enhanced CR ionization, but cannot explain the X(C₂H), X(C₃H⁺) and X(HCS⁺)/X(CS).

Thank you for your listening!